A new era of semiconductor genetics using ion-sensitive field-effect transistors: the gene-sensitive integrated cell.

نویسندگان

  • Christofer Toumazou
  • Tan Sri Lim Kok Thay
  • Pantelis Georgiou
چکیده

Semiconductor genetics is now disrupting the field of healthcare owing to the rapid parallelization and scaling of DNA sensing using ion-sensitive field-effect transistors (ISFETs) fabricated using commercial complementary metal -oxide semiconductor technology. The enabling concept of DNA reaction monitoring introduced by Toumazou has made this a reality and we are now seeing relentless scaling with Moore's law ultimately achieving the $100 genome. In this paper, we present the next evolution of this technology through the creation of the gene-sensitive integrated cell (GSIC) for label-free real-time analysis based on ISFETs. This device is derived from the traditional metal-oxide semiconductor field-effect transistor (MOSFET) and has electrical performance identical to that of a MOSFET in a standard semiconductor process, yet is capable of incorporating DNA reaction chemistries for applications in single nucleotide polymorphism microarrays and DNA sequencing. Just as application-specific integrated circuits, which are developed in much the same way, have shaped our consumer electronics industry and modern communications and memory technology, so, too, do GSICs based on a single underlying technology principle have the capacity to transform the life science and healthcare industries.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Mechanism Underlying the Electrical Polarity Detection of Sensitive Plant, Mimosa Pudica

Natural indicators of the electrical polarity of a direct current (DC) source is limited to semiconductor based diodes and transistors. Recently a novel bio-natural indicator of the polarity of a DC source have been reported. Mimosa Pudica or sensitive plant is found to be a natural detector of a DC source polarity, however the mechanism underlying this phenomenon is not known. This paper aims ...

متن کامل

Study of the electrolyte-insulator-semiconductor field-effect transistor (EISFET) with applications in biosensor design

This paper presents a comprehensive review of the ion-sensitive field-effect transistor (ISFET) and its applications in biomolecular sensing and characterization of electrochemical interfaces. An introduction to the physics of field-effect transistors is presented, followed by a study of the properties of electrolytic solutions and electrolyte interface surface effects. Full modeling of the ion...

متن کامل

Modeling Ion Sensitive Field Effect Transistors for Biosensor Applications

During recent decades increasing interest has been shown in the development of biosensors based on ion sensitive field effect transistors (ISFETs). Many ISFET– based pH sensors have been already commercialized and attempts have also been made to commercialize ISFETbased biosensors for applications in the fields of medical, environmental, food safety, military and biotechnology areas. The growin...

متن کامل

A Novel pH-dependent Drift Improvement Method for Zirconium Dioxide Gated pH-Ion Sensitive Field Effect Transistors

A novel compensation method for Zirconium dioxide gated Ion Sensitive Field Effect Transistors (ISFETs) to improve pH-dependent drift was demonstrated. Through the sequential measurements for both the n-channel and p-channel ISFETs, 75-100% pH-dependent drift could be successfully suppressed for the first seven hours. As a result, a nearly constant drift rate versus pH value was obtained, which...

متن کامل

Biologically sensitive field-effect transistors: from ISFETs to NanoFETs

Biologically sensitive field-effect transistors (BioFETs) are one of the most abundant classes of electronic sensors for biomolecular detection. Most of the time these sensors are realized as classical ion-sensitive field-effect transistors (ISFETs) having non-metallized gate dielectrics facing an electrolyte solution. In ISFETs, a semiconductor material is used as the active transducer element...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Philosophical transactions. Series A, Mathematical, physical, and engineering sciences

دوره 372 2012  شماره 

صفحات  -

تاریخ انتشار 2014